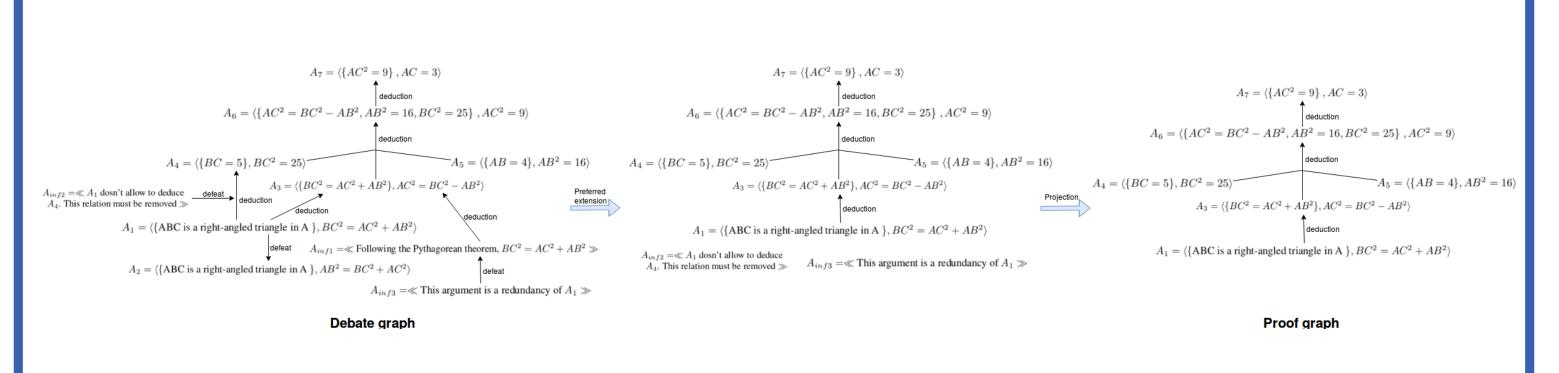
Argumentation Frameworks for Constructing and Evaluating Deductive Mathematical Proofs

Laboratoire d'Informatique de Robotique de Microélectronique de Montpellier

IRMM

Nadira Boudjani, Abdelkader Gouaich and Souhila Kaci Laboratoire de l'Informatique, de Robotique et de Microélectronique de Montpellier {boudjani, gouaich, kaci}@lirmm.fr

Problem statement


Argumentation in the didactics of mathematics:

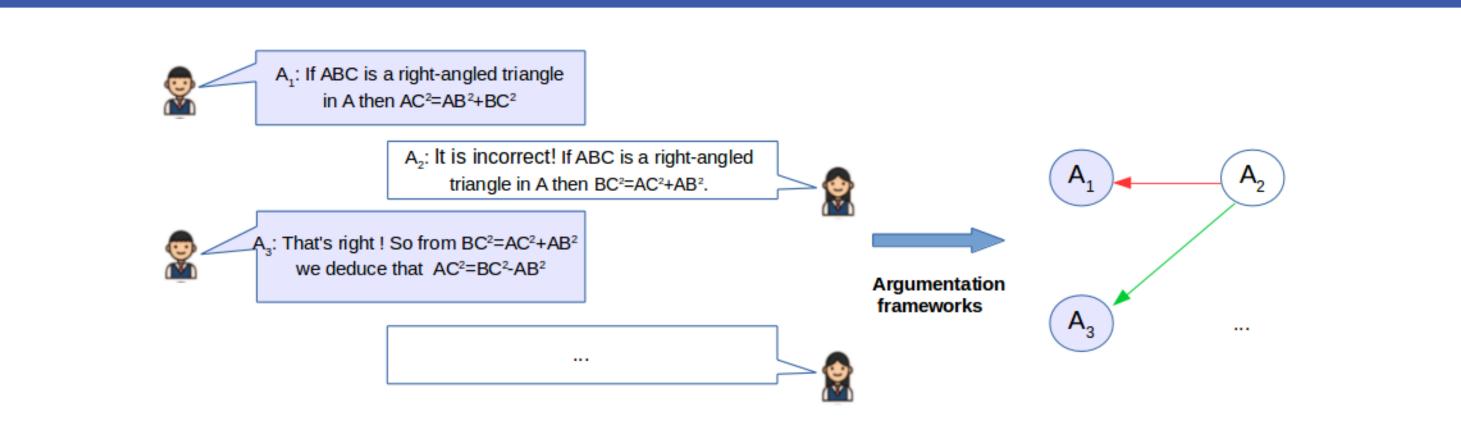
- Enhances critical thinking and meta-cognitive skills
- Increases the student's motivation through open interactions
- Allows mutual learning amongst the students

Yet, the following shortcomings are pointed out:

• The language to outline the proof differs from the language of the final proof \Rightarrow Difficulties to write the final proof

Analysis of the debate graph

The proof graph is obtained by:


1. Computing the acceptable arguments using the preferred semantics

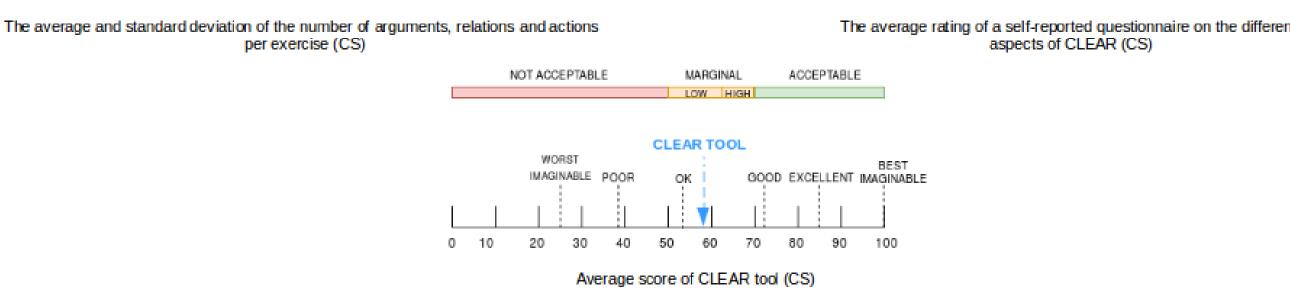
- Evaluating the informal debate \Rightarrow difficulty of evaluation and to provide constructive feedback
- Evaluating the final proof \Rightarrow Loss of information to identify misunderstandings

Proposition The CLEAR system (lirmm.fr/mathgame/tmp) has a twofold objective:

- Allow students to build deductive proofs using structured argumentative debates
- Help the instructors evaluate these proofs in order to identify misconceptions and provide a relevant feedback

Argumentation in Al

2. Projecting the acceptable arguments on deduction relation

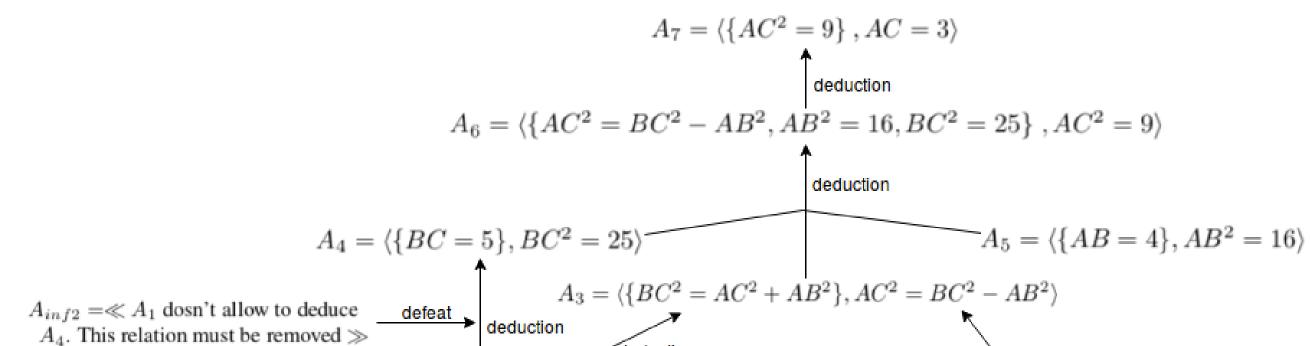

Experiment #1: Students

Goal: Are formal argumentation frameworks suitable for building deductive proofs? **Experimental protocol:** Undergraduate students from the department of mathematics (n = 8) and the department of computer science (n = 16)solved 3 exercises: linear algebra, probability, and analysis. Results

(a) The average and standard deviation of the number of arguments and relations.						
	Formal argument	Informal argument	Defeat	Simple deduc.	Multiple deduc.	
Exercise 1	10(2.2)	0(0)	0.25(0.7)	9.37(5.57)	4.25(3.24)	
Exercise 2	7.37(3.11)	0.5(0.92)	0.5(0.75)	6.75(2.76)	2.37(2.26)	
Exercise 3	4.85(2.54)	0.14(0.37)	0(0)	3.57(2.5)	0.85(1.06)	
(b) The average and standard deviation of actions.						
	Delete relation	Edit argument	Pass turn			
Exercise 1	3(3.81)	1.87(2.35)	0.12(0.35)			
Exercise 2	0.5(1.41)	2(2.67)	0.12(0.34)			
Exercise 3	0.71(1.49)	1.14(0.89)	0.28(0.75)			

Item	average rating /5
C1: Comprehension of formal argument and argumentation theory	3,46
C2: Representation of proof by graph and its visualization: Arguments and relations	3,34
C3: Building formal argument by selecting premise(s) and conclusion	3,37
C4: Adding relations: Deduction and defeat	2,94
C5: Importance of having multiple deduction relation	3,63
C6: Importance of having edit argument action	4,43
C7: Importance of having delete relation action	4,75
C8: Importance of having pass action	1,78
C9: Importance of having informal arguments	2,56
C10: Relevance of building proofs in pair	3,78

spects of CLEAR (CS



The Defeat-Support argumentation framework is a tuple $\langle \mathcal{A}, Def, Supp \rangle$, where \mathcal{A} is a set of arguments, $Def \subseteq \mathcal{A} \times (\mathcal{A} \cup Def \cup Supp)$ is a defeat relation, and $Supp \subseteq \mathcal{A} \times (\mathcal{A} \cup Def \cup Supp)$ is a necessary support relation.

Semantics for acceptability of arguments

- $S \subseteq A$ is *admissible* iff S is conflict-free and defends all its elements.
- $\mathcal{S} \subseteq \mathcal{A}$ is a *preferred extension* iff \mathcal{S} is the largest (for set inclusion) admissible set.

Construction of deductive proofs

Experiment #2: Instructors

Goals:

- What are the representations that allow instructors to easily correct deductive proofs?
- What are the representations that allow instructors to provide a rel-(ii) evant feedback?

Experimental protocol: (n = 8) teachers (high school and lecturers) evaluate proofs by four methods: debate journal (M1); proof graph (M2); classical proof (M3); and having all the three representations (M4)Results

deduction deduction $A_1 = \langle \{ ABC \text{ is a right-angled triangle in A } \}, BC^2 = AC^2 + AB^2 \rangle$ $A_{inf1} = \ll$ Following the Pythagorean theorem, $BC^2 = AC^2 + AB^2 \gg$ defeat $A_2 = \langle \{ABC \text{ is a right-angled triangle in } A \}, AB^2 = BC^2 + AC^2 \rangle$ $A_{inf3} = \ll$ This argument is a redundancy of $A_1 \gg$

The students build a debate graph with:

- Formal arguments: $\langle \{P_i\}, C \rangle$, where $\{P_i\}$ are the premises and C the conclusion
- Informal arguments: free text
- **Deduction relations:** deduction between arguments
- **Defeat relations:** conflict on arguments and relations

The results of the experimental studies suggest that:

- AI argumentation frameworks are suitable for building deductive proofs without any prior knowledge on argumentation theory
- The usability of CLEAR has been rated as 'OK' on the Standard Usability Scale
- The instructors have considered that the proof graph representation facilitates the assessment of proofs and helps understand the students' reasoning.